RUS  ENG
Полная версия
ЖУРНАЛЫ // Журнал математической физики, анализа, геометрии // Архив

Матем. физ., анал., геом., 2003, том 10, номер 3, страницы 335–365 (Mi jmag255)

Эта публикация цитируется в 21 статьях

On the edge universality of the local eigenvalue statistics of matrix models

L. Pasturab, M. Shcherbinaa

a Mathematical Divizion, B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, 47, Lenin Ave., Kharkiv, 61103, Ukraine
b University Paris 7, 2 Place Jussieu, F-75251, Paris, Cedex 05, France

Аннотация: Basing on our recent results on the $1/n$-expansion in unitary invariant random matrix ensembles, known as matrix models, we prove that the local eigenvalue statistic, arising in a certain neighborhood of the edges of the support of the density of states, is independent of the form of the potential, determining the matrix model. Our proof is applicable to the case of real analytic potentials and of supports, consisting of one or two disjoint intervals.

MSC: 60B99, 60H30

Поступила в редакцию: 15.04.2003

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2025