RUS  ENG
Полная версия
ЖУРНАЛЫ // Журнал математической физики, анализа, геометрии // Архив

Матем. физ., анал., геом., 2003, том 10, номер 3, страницы 366–384 (Mi jmag256)

Эта публикация цитируется в 9 статьях

Generation of asymptotic solitons in an integrable model of stimulated Raman scattering by periodic boundary data

Eugene Khruslov, Vladimir Kotlyarov

Mathematical Division, B. Verkin Institute for Low Temperature Physics and Engineering, 47 Lenin Ave., Kharkiv, 61103, Ukraine

Аннотация: We consider an integrable model of stimulated Raman scattering. The corresponding hyperbolic partial differential equations are referred to as SRS nonlinear equations. We study the initial boundary value Goursat problem for these equations in the quarter of $(x,t)$-plane. The initial function vanishes at infinity while boundary data are local perturbations of a simplest periodic functions. We obtain the representation of the solution of the SRS nonlinear equations in the quarter of $(x,t)$-plane via functions, satisfying Marchenko integral equations, and, on this basis, we investigate the asymptotic behavior of the solution for large time. We prove that the periodic boundary data generate an unbounded train of solitons running away from the boundary.

MSC: 35Q58

Поступила в редакцию: 27.02.2003

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2025