RUS  ENG
Полная версия
ЖУРНАЛЫ // Журнал математической физики, анализа, геометрии // Архив

Журн. матем. физ., анал., геом., 2013, том 9, номер 4, страницы 536–581 (Mi jmag579)

Эта публикация цитируется в 3 статьях

On Non-Gaussian Limiting Laws for Certain Statistics of Wigner Matrices

A. Lytova

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, 47 Lenin Ave., Kharkiv 61103, Ukraine

Аннотация: This paper is a continuation of our papers [12–14] in which the limiting laws of fluctuations were found for the linear eigenvalue statistics $\mathrm{Tr}\,\varphi (M^{(n)})$ and for the normalized matrix elements $\sqrt{n}\varphi_{jj}(M^{(n)})$ of differentiable functions of real symmetric Wigner matrices $M^{(n)}$ as $n\rightarrow\infty$. Here we consider another spectral characteristic of Wigner matrices, $\xi^{A} _{n}[\varphi ]=\mathrm{Tr}\,\varphi (M^{(n)})A^{(n)}$, where $\{A^{(n)}\}_{n=1}^\infty$ is a certain sequence of non-random matrices. We show first that if $M^{(n)}$ belongs to the Gaussian Orthogonal Ensemble, then $\xi^{A} _{n}[\varphi ]$ satisfies the Central Limit Theorem. Then we consider Wigner matrices with i.i.d. entries possessing the entire characteristic function and find the limiting probability law for $\xi^{A} _{n}[\varphi ]$, which in general is not Gaussian.

Ключевые слова и фразы: Wigner matrices, spectral characteristics, central limit theorem.

MSC: Primary 60F05, 15B52; Secondary 15A18

Поступила в редакцию: 02.04.2012

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024