RUS  ENG
Полная версия
ЖУРНАЛЫ // Журнал математической физики, анализа, геометрии // Архив

Журн. матем. физ., анал., геом., 2014, том 10, номер 2, страницы 189–220 (Mi jmag588)

Эта публикация цитируется в 3 статьях

Generalized Duality, Hamiltonian Formalism and New Brackets

S. Duplij

Theory Group, Nuclear Physics Laboratory, V. N. Karazin Kharkiv National University, 4 Svoboda Sq., Kharkiv 61022, Ukraine

Аннотация: It is shown that any singular Lagrangian theory: 1) can be formulated without the use of constraints by introducing a Clairaut-type version of the Hamiltonian formalism; 2) leads to a special kind of nonabelian gauge theory which is similar to the Poisson gauge theory; 3) can be treated as the many-time classical dynamics. A generalization of the Legendre transform to the zero Hessian case is done by using the mixed (envelope/general) solution of the multidimensional Clairaut equation. The equations of motion are written in the Hamilton-like form by introducing new antisymmetric brackets. It is shown that any classical degenerate Lagrangian theory is equivalent to the many-time classical dynamics. Finally, the relation between the presented formalism and the Dirac approach to constrained systems is given.

Ключевые слова и фразы: Dirac constraints, nonabelian gauge theory, degenerate Lagrangian, Hessian, Legendre transform, multidimensional Clairaut equation, gauge freedom, Poisson bracket, many-time dynamics.

MSC: 37J05, 44A15, 49K20, 70H45

Поступила в редакцию: 28.02.2013
Исправленный вариант: 16.07.2013

Язык публикации: английский

DOI: 10.15407/mag10.02.189



Реферативные базы данных:


© МИАН, 2024