Аннотация:
It is proved that the maximum dimension of the Lie group of automorphisms of a Riemann–Cartan manifold $(M,g,\tilde{\nabla})$ is $\frac{n(n-1)}{2}+1$, where $M$ is a smooth $n$-dimensional manifold, $g$ is a Riemannian or semi-Riemannian metric on $M$, $\tilde{\nabla }$ is a semi-symmetric connection.
Ключевые слова и фразы:Riemann–Cartan manifolds, automorphisms, semi-symmetric connection.