RUS  ENG
Полная версия
ЖУРНАЛЫ // Журнал математической физики, анализа, геометрии // Архив

Журн. матем. физ., анал., геом., 2014, том 10, номер 3, страницы 309–319 (Mi jmag596)

Refinement of Isoperimetric Inequality of Minkowski with the Account of Singularities in Boundaries of Intrinsic Parallel Bodies

V. I. Diskant

Cherkasy State Technologic University, 460 Shevchenko Blvd., Cherkasy 18006, Ukraine

Аннотация: The following inequalities are proved:
\begin{eqnarray*} S^n(A,B)\geq n^n\sum\limits_{i=0}^{k-1} V(B_{A_i})\left( V^{n-1}(A_i) - V^{n-1}(A_{i+1}) \right) +S^n(A_{-T}(B),B), \end{eqnarray*}

\begin{eqnarray*} S^n(A,B)\geq n^n\int\limits_{0}^{T} g(t) df(t) +S^n(A_{-T}(B),B), \end{eqnarray*}

\begin{eqnarray*} S^n(A,B)\geq n^n\int\limits_{0}^{q} g(t) df(t) +S^n(A_{-q}(B),B), \end{eqnarray*}
where $V(A)$, $V(B)$ stand for the volumes of convex bodies $A$ and $B$ in $\mathbb R^n$ ($n\geq 2$), $S(A,B)$ denotes the area of the surface of the body $A$ relative to the body $B$, $q$ is the capacity factor of the body $B$ with respect to the body $A$, $A_i = A_{-t_i}(B) = A / (t_iB)$ is the inner body parallel to the body $A$ with respect to the body $B$ at a distance $t_i$, $0=t_0 < t_1 <\ldots< t_i< \ldots < t_{k-1}<t_k=T<q$, $B_{A_i}$ is a shape body of $A_i$ relative to $B$, $g(t) = V(B_{A_{-t}(B)})$, $f(t) = - V^{n-1}( A_{-t}(B))$, $\int\limits_{0}^{T} g(t) df(t) $ is the Riemann–Stieltjes integral of the function $g(t)$ by the function $f(t)$, and $\int\limits_{0}^{q} g(t) df(t) = \lim\limits_{T\to q} \int\limits_{0}^{T} g(t) df(t)$.

Ключевые слова и фразы: convex body, isoperimetric inequality, Minkowski inequality.

MSC: 53B50

Поступила в редакцию: 14.05.2013
Исправленный вариант: 23.12.2013

Язык публикации: английский

DOI: 10.15407/mag10.03.309



Реферативные базы данных:


© МИАН, 2024