Eigenvalue distribution of bipartite large weighted random graphs. Resolvent approach
V. Vengerovsky B. Verkin Institute for Low Temperature Physics and Engineering,
National Academy of Sciences of Ukraine, 47 Nauki Ave., Kharkiv, 61103, Ukraine
Аннотация:
We study an eigenvalue distribution of the adjacency matrix
$A^{(N,p,
\alpha)}$ of the weighted random bipartite graphs
$\Gamma=
\Gamma_{N,p,\alpha}$. We assume that the graphs have
$N$ vertices, the
ratio of parts is
$\frac{\alpha}{1-\alpha}$, and the average number of
edges attached to one vertex is
$\alpha p$ for the first part and
$(1-\alpha) p$ for the second part of vertices. To each edge of the graph
$e_{ij}$, we assign the weight given by a random variable
$a_{ij}$ with the
finite second moment.
We consider the resolvents
$G^{(N,p, \alpha)}(z)$ of
$A^{(N,p, \alpha)}$
and study the functions
\begin{gather*}f_{1,N}(u,z)=\frac{1}{[\alpha
N]}\sum_{k=1}^{[\alpha N]}e^{-ua_k^2G_{kk}^{(N,p,\alpha)}(z)} \end{gather*}
and
\begin{gather*}f_{2,N}(u,z)=\frac{1}{N-[\alpha N]}\sum_{k=[\alpha
N]+1}^Ne^{-ua_k^2G_{kk}^{(N,p,\alpha)}(z)}\end{gather*}
in the limit
$N\to
\infty$. We derive a closed system of equations that uniquely determine the
limiting functions
$f_{1}(u,z)$ and
$f_{2}(u,z)$. This system of equations
allows us to prove the existence of the limiting measure
$\sigma_{p,
\alpha}$. The weak convergence in probability of the normalized eigenvalue
counting measures is proved.
Ключевые слова и фразы:
sparse random matrices, bipartite graphs, normalized eigenvalue counting measure.
MSC: 15B52 Поступила в редакцию: 26.01.2015
Исправленный вариант: 16.06.2015
Язык публикации: английский
DOI:
10.15407/mag12.01.078