RUS  ENG
Полная версия
ЖУРНАЛЫ // Журнал математической физики, анализа, геометрии // Архив

Журн. матем. физ., анал., геом., 2018, том 14, номер 4, страницы 406–451 (Mi jmag706)

Эта публикация цитируется в 6 статьях

Long-time asymptotics for the Toda shock problem: non-overlapping spectra

Iryna Egorovaa, Johanna Michorb, Gerald Teschlb

a B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine, 47 Nauky Ave., Kharkiv, 61103, Ukraine
b Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Wien, Austria

Аннотация: We derive the long-time asymptotics for the Toda shock problem using the nonlinear steepest descent analysis for oscillatory Riemann–Hilbert factorization problems. We show that the half-plane of space/time variables splits into five main regions: The two regions far outside where the solution is close to the free backgrounds. The middle region, where the solution can be asymptotically described by a two band solution, and two regions separating them, where the solution is asymptotically given by a slowly modulated two band solution. In particular, the form of this solution in the separating regions verifies a conjecture from Venakides, Deift, and Oba from 1991.

Ключевые слова и фразы: Toda lattice, Riemann–Hilbert problem, shock wave.

MSC: Primary 37K40, 37K10; Secondary 37K60, 35Q15

Поступила в редакцию: 06.01.2018

Язык публикации: английский

DOI: 10.15407/mag14.04.406



© МИАН, 2024