RUS  ENG
Полная версия
ЖУРНАЛЫ // Журнал математической физики, анализа, геометрии // Архив

Журн. матем. физ., анал., геом., 2019, том 15, номер 2, страницы 170–191 (Mi jmag721)

Эта публикация цитируется в 14 статьях

Analog of Hayman's theorem and its application to some system of linear partial differential equations

Andriy Banduraa, Oleh Skaskivb

a Ivano-Frankivsk National Technical University of Oil and Gas, 15 Karpatska Str., Ivano-Frankivsk, 76019, Ukraine
b Ivan Franko National University of Lviv, 1 Universytetska Str., Lviv, 79000, Ukraine

Аннотация: We used the analog of known Hayman's theorem to study the boundedness of $\mathbf{L}$-index in joint variables of entire solutions of some linear higher-order systems of PDE's and found sufficient conditions providing the boundedness, where $\mathbf{L}(z)=(l_1(z), \ldots, l_{n}(z)),$ $l_j:\mathbb{C}^n\to \mathbb{R}_+$ is a continuous function $j\in\{1,\ldots,n\}.$ Growth estimates of these solutions are also obtained. We proposed the examples of systems of PDE's which prove the exactness of these estimates for entire solutions. The obtained results are new even for the one-dimensional case because of the weakened restrictions imposed on the positive continuous function $l.$

Ключевые слова и фразы: entire function, bounded $\mathbf{L}$-index in joint variables, linear higher-order systems of PDE, analytic theory of PDE, entire solution, linear higher-order differential equation.

MSC: 32W50, 32A15, 32A22, 35G35, 32A40.

Поступила в редакцию: 28.10.2017
Исправленный вариант: 06.11.2017

Язык публикации: английский

DOI: 10.15407/mag15.02.170



Реферативные базы данных:


© МИАН, 2024