RUS  ENG
Полная версия
ЖУРНАЛЫ // Журнал математической физики, анализа, геометрии // Архив

Журн. матем. физ., анал., геом., 2019, том 15, номер 2, страницы 203–224 (Mi jmag723)

Nonlocal elasticity theory as a continuous limit of 3D networks of pointwise interacting masses

Mariya Goncharenko, Eugen Khruslov

B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine, 47 Nauky Ave., Kharkiv, 61103, Ukraine

Аннотация: Small oscillations of an elastic system of point masses (particles) with a nonlocal interaction are considered. The asymptotic behavior of the system is studied when a number of particles tend to infinity and the distances between them and the forces of interaction tend to zero. The first term of the asymptotic is described by the homogenized system of equations, which is a nonlocal model of oscillations of elastic medium.

Ключевые слова и фразы: nonlocal elasticity, homogenization, integral model, Eringen model.

MSC: 35Q70, 35Q74, 35B27.

Поступила в редакцию: 22.01.2018
Исправленный вариант: 13.04.2018

Язык публикации: английский

DOI: 10.15407/mag15.02.203



Реферативные базы данных:


© МИАН, 2024