RUS  ENG
Полная версия
ЖУРНАЛЫ // Журнал математической физики, анализа, геометрии // Архив

Журн. матем. физ., анал., геом., 2019, том 15, номер 3, страницы 336–353 (Mi jmag731)

Эта публикация цитируется в 6 статьях

Implicit linear nonhomogeneous difference equation in Banach and locally convex spaces

S. L. Gefter, A. L. Piven

School Mathematics and Computer Sciences, V.N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv, 61022, Ukraine

Аннотация: The subjects of this work are the implicit linear difference equations $Ax_{n+1}+Bx_n=g_n$ and $Ax_{n+1}=x_n-f_n, n=0,1,2,\ldots$, where $A$ and $B$ are continuous operators acting in certain locally convex spaces. The existence and uniqueness conditions, along with explicit formulas, are obtained for solutions of these equations. As an application of the general theory produced this way, the equation $Ax_{n+1}=x_n-f_n$ in the space $\mathbb{R}^{\infty}$ of finite sequences and in the space $\mathbb{R}^M$, where $M$ is an arbitrary set, has been studied.

Ключевые слова и фразы: difference equation, locally convex space, Banach space, locally nilpotent operator.

MSC: 39A06.

Поступила в редакцию: 16.04.2018
Исправленный вариант: 15.11.2018

Язык публикации: английский

DOI: 10.15407/mag15.03.336



Реферативные базы данных:


© МИАН, 2024