RUS  ENG
Полная версия
ЖУРНАЛЫ // Журнал математической физики, анализа, геометрии // Архив

Журн. матем. физ., анал., геом., 2019, том 15, номер 3, страницы 379–394 (Mi jmag734)

Эта публикация цитируется в 5 статьях

On Einstein sequential warped product spaces

Sampa Pahana, Buddhadev Palb

a Department of Mathematics, University of Kalyani, Nadia-741235, India
b Department of Mathematics, Institute of Science, Banaras Hindu University, Varanasi-221005, India

Аннотация: In this paper, Einstein sequential warped product spaces are studied. Here we prove that if $M$ is an Einstein sequential warped product space with negative scalar curvature, then the warping functions are constants. We find out some obstructions for the existence of such Einstein sequential warped product spaces. We also show that if $\bar{M}=(M_1\times_f I_{M_2})\times_{\bar{f}} I_{M_3}$ is a sequential warped product of a complete connected $(n-2)$-dimensional Riemannian manifold $M_1$ and one-dimensional Riemannian manifolds $I_{M_2}$ and $I_{M_3}$ with some certain conditions, then $(M_1, g_1)$ becomes a $(n-2)$-dimensional sphere of radius $\rho=\frac{n-2}{\sqrt{r^1+\alpha}}.$ Some examples of the Einstein sequential warped product space are given in Section 3.

Ключевые слова и фразы: warped product, sequential warped product, Einstein manifold.

MSC: 53C21, 53C25, 53C50.

Поступила в редакцию: 05.01.2018
Исправленный вариант: 26.06.2018

Язык публикации: английский

DOI: 10.15407/mag15.03.379



Реферативные базы данных:


© МИАН, 2024