RUS  ENG
Полная версия
ЖУРНАЛЫ // Журнал математической физики, анализа, геометрии // Архив

Журн. матем. физ., анал., геом., 2020, том 16, номер 2, страницы 161–173 (Mi jmag751)

Biharmonic Hopf hypersurfaces of complex Euclidean space and odd dimensional sphere

Najma Mosadegh, Esmaiel Abedi

Depertment of Mathematics Azarbaijan Shahid Madani University, Tabriz 53751 71379, Iran

Аннотация: In this paper, biharmonic Hopf hypersurfaces in the complex Euclidean space $C^{n+1}$ and in the odd dimensional sphere $S^{2n+1}$ are considered. We prove that the biharmonic Hopf hypersurfaces in $C^{n+1}$ are minimal. Also, we determine that the Weingarten operator $A$ of a biharmonic pseudo-Hopf hypersurface in the unit sphere $S^{2n+1}$ has exactly two distinct principal curvatures at each point if the gradient of the mean curvature belongs to $D^\perp$, and thus is an open part of the Clifford hypersurface $S^{n_1} (1/\sqrt{2})\times S^{n_2} (1/\sqrt{2})$, where $n_1 + n_2 =2n$.

Ключевые слова и фразы: biharmonic hypersurfaces, Hopf hypersurfaces, Chen's conjecture.

MSC: 53A10, 53C42

Поступила в редакцию: 09.01.2019
Исправленный вариант: 28.11.2019

Язык публикации: английский

DOI: 10.15407/mag16.02.161



Реферативные базы данных:


© МИАН, 2024