RUS  ENG
Полная версия
ЖУРНАЛЫ // Журнал математической физики, анализа, геометрии // Архив

Журн. матем. физ., анал., геом., 2020, том 16, номер 2, страницы 119–137 (Mi jmag771)

Эта публикация цитируется в 1 статье

On certain geometric properties in Banach spaces of vector-valued functions

Jan-David Hardtke

University of Leipzig, 10 Augustusplatz, Leipzig, 04109, Germany

Аннотация: We consider a certain type of geometric properties of Banach spaces, which includes, for instance, octahedrality, almost squareness, lushness and the Daugavet property. For this type of properties, we obtain a general reduction theorem, which, roughly speaking, states the following: if the property in question is stable under certain nite absolute sums (for example, nite $l^p$-sums), then it is also stable under the formation of corresponding Köthe{Bochner spaces (for example, $L^p$-Bochner spaces). From this general theorem, we obtain as corollaries a number of new results as well as some alternative proofs of already known results concerning octahedral and almost square spaces and their relatives, diameter two properties, lush spaces and other classes.

Ключевые слова и фразы: absolute sums, Köothe–Bochner spaces, Lebesgue–Bochner spaces, octahedral spaces, almost square spaces, diameter two properties, lush spaces, generalised lush spaces, Daugavet property.

MSC: 46B20, 46E40

Поступила в редакцию: 09.05.2019
Исправленный вариант: 06.06.2019

Язык публикации: английский

DOI: 10.15407/mag16.02.119



Реферативные базы данных:


© МИАН, 2024