RUS  ENG
Полная версия
ЖУРНАЛЫ // Журнал Сибирского федерального университета. Серия «Математика и физика» // Архив

Журн. СФУ. Сер. Матем. и физ., 2008, том 1, выпуск 2, страницы 105–124 (Mi jsfu12)

Эта публикация цитируется в 5 статьях

Multi-Logarithmic Differential Forms on Complete Intersections

Alexandr G. Aleksandrova, Avgust K. Tsikhb

a Institute of Control Sciences, Russian Academy of Sciences
b Institute of Mathematics, Siberian Federal University

Аннотация: We construct a complex $\Omega_S^\bullet(\log C)$ of sheaves of multi-logarithmic differential forms on a complex analytic manifold $S$ with respect to a reduced complete intersection $C\subset S$, and define the residue map as a natural morphism from this complex onto the Barlet complex $\omega_C^\bullet$ of regular meromorphic differential forms on $C$. It follows then that sections of the Barlet complex can be regarded as a generalization of the residue differential forms defined by Leray. Moreover, we show that the residue map can be described explicitly in terms of certain integration current.

Ключевые слова: complete intersection, multi-logarithmic differential forms, regular meromorphic differential forms, Poincaré residue, logarithmic residue, Grothendieck duality, residue current.

УДК: 517.55

Получена: 02.02.2008
Исправленный вариант: 10.04.2008
Принята: 12.04.2008

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024