Аннотация:
В работе рассматриваются дифференциальные кольца и уравнения с частными производными с коэффициентами в некотором кольце. Вводятся симметрии и законы сохранения дифференциального идеала произвольного дифференциального кольца. Доказано, что множество симметрий идеала образуют кольцо Ли. Получен критерий того, что дифференцирование является симметрией идеала. Эти построения применяются к уравнениям в частных производных.
Ключевые слова:дифференциальные кольца и идеалы, инвариантность, уравнения с частными производными.