Аннотация:
На основе известных математических моделей, описывающих колебания в потоке газа плохо обтекаемого тела с одной степенью свободы, предложена модель колебаний тела с двумя степенями свободы. Составлены уравнения поперечных поступательных колебаний и вращательных колебаний упруго закрепленного тела вокруг оси, перпендикулярной вектору скорости набегающего потока. Методом Крылова–Боголюбова в первом приближении уравнения сводятся к уравнениям для медленно меняющихся амплитуд и частот колебаний. Оказалось, что дифференциальные уравнения, выписанные для квадратов безразмерных амплитуд поступательных и вращательных колебаний, совпадают с известными уравнениями Лотки–Вольтерры, описывающими конкуренцию между двумя видами животных, питающихся одинаковой пищей. Коэффициенты уравнений зависят от скорости набегающего потока. Модель верифицирована на примере колебаний макета сегмента моста в аэродинамической трубе.
Ключевые слова:поступательные и вращательные колебания, воздушный поток, плохо обтекаемое тело.
Поступила в редакцию: 04.12.2020 Исправленный вариант: 04.12.2020 Принята в печать: 08.12.2020