RUS  ENG
Полная версия
ЖУРНАЛЫ // Letters in Mathematical Physics // Архив

Lett. Math. Phys., 2013, том 103, выпуск 3, страницы 299–329 (Mi letmp2)

Эта публикация цитируется в 59 статьях

Spectral duality between Heisenberg chain and Gaudin model

A. Mironovab, A. Morozova, B. Runovac, E. Zenkevichad, A. Zotova

a ITEP, Moscow, Russia
b Theory Department, Lebedev Physics Institute, Moscow, Russia
c MIPT, Dolgoprudniy, Moscow, Russia
d Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia

Аннотация: In our recent paper we described relationships between integrable systems inspired by the AGT conjecture. On the gauge theory side an integrable spin chain naturally emerges while on the conformal field theory side one obtains some special reduced Gaudin model. Two types of integrable systems were shown to be related by the spectral duality. In this paper we extend the spectral duality to the case of higher spin chains. It is proved that the $N$-site $\mathrm{GL}_k$ Heisenberg chain is dual to the special reduced $k+2$-points $\mathrm{gl}_N$ Gaudin model. Moreover, we construct an explicit Poisson map between the models at the classical level by performing the Dirac reduction procedure and applying the AHH duality transformation.

MSC: 14H70, 14H81, 81Q99

Поступила в редакцию: 03.07.2012
Исправленный вариант: 05.11.2012
Принята в печать: 06.11.2012

Язык публикации: английский

DOI: 10.1007/s11005-012-0595-0



Реферативные базы данных:


© МИАН, 2024