RUS  ENG
Полная версия
ЖУРНАЛЫ // Lobachevskii Journal of Mathematics // Архив

Lobachevskii J. Math., 2003, том 13, страницы 81–85 (Mi ljm102)

Submanifolds of an even-dimensional manifold structured by a $\mathcal T$-parallel connection

K. Matsumotoa, A. Mihaib, D. Naitzac

a Nagoya University
b Faculty of Mathematics and Computer Science, University of Bucharest
c Istituto di Matematica, Facoltà di Economia, Università di Messina

Аннотация: Even-dimensional manifolds $N$ structured by a $\mathcal T$-parallel connection have been defined and studied in [DR], [MRV]. In the present paper, we assume that $N$ carries a $(1,1)$-tensor field $J$ of square ${-1}$ and we consider an immersion $x : M\to N$. It is proved that any such $M$ is a CR-product [B] and one may decompose $M$ as $M=M_D\times M_{D^\perp}$, where $M_D$ is an invariant submanifold of $M$ and $M_{D\perp}$ is an antiinvariant submanifold of $M$. Some other properties regarding the immersion $x:M\to N$ are discussed.

Представлено: Б. Н. Шапуков
Поступило: 15.05.2003

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2025