RUS  ENG
Полная версия
ЖУРНАЛЫ // Lobachevskii Journal of Mathematics // Архив

Lobachevskii J. Math., 2002, том 11, страницы 27–38 (Mi ljm118)

Эта публикация цитируется в 2 статьях

On the cyclic subgroup separability of free products of two groups with amalgamated subgroup

E. V. Sokolov

Ivanovo State University

Аннотация: Let $G$ be a free product of two groups with amalgamated subgroup, $\pi$ be either the set of all prime numbers or the one-element set $\{p\}$ for some prime number $p$. Denote by $\sum$ the family of all cyclic subgroups of group $G$, which are separable in the class of all finite $\pi$-groups. Obviously, cyclic subgroups of the free factors, which aren't separable in these factors by the family of all normal subgroups of finite $\pi$-index of group $G$, the subgroups conjugated with them and all subgroups, which aren't $\pi'$-isolated, don't belong to $\sum$. Some sufficient conditions are obtained for $\sum$ to coincide with the family of all other $\pi'$-isolated cyclic subgroups of group $G$. It is proved, in particular, that the residual $\pi'$-finiteness of a free product with cyclic amalgamation implies the $p$-separability of all $p'$-isolated cyclic subgroups if the free factors are free or finitely generated residually $p$-finite nilpotent groups.

Ключевые слова: Generalized free products, cyclic subgroup separability.

Представлено: М. М. Арсланов
Поступило: 04.07.2002

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024