RUS  ENG
Полная версия
ЖУРНАЛЫ // Lobachevskii Journal of Mathematics // Архив

Lobachevskii J. Math., 2002, том 10, страницы 17–26 (Mi ljm120)

Complete convergence of weighted sums in Banach spaces and the bootstrap mean

T.-Ch. Hua, M. Ordóñez Cabrerab, S. H. Sungc, A. I. Volodinde

a National Tsing Hua University, Department of Mathematics
b University of Seville
c Pai Chai University
d Kazan State University
e University of Regina

Аннотация: Let $\{X_{ni},1\le i\le k_n, n\ge 1\}$ be an array of rowwise independent random elements taking values in a real separable Banach space, and $\{a_{ni},1\le i\le k_n, n\ge 1\}$ an array of constants. Under some conditions of Chung [7] and Hu and Taylor [10] types for the arrays, and using a theorem of Hu et al. [9], the equivalence amongst various kinds of convergence of $\sum_{i=1}^{k_n}a_{ni}X_{ni}$ to zero is obtained. It leads to an unified vision of recent results in the literature. The authors use the main result in the paper in order to obtain the strong consistency of the bootstrapped mean of random elements in a Banach space from its weak consistency.

Ключевые слова: random elements, Banach spaces, weighted sums, rowwise independence, complete convergence, bootstrap mean.

Представлено: Д. Х. Муштари
Поступило: 03.04.2002

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2025