RUS  ENG
Полная версия
ЖУРНАЛЫ // Lobachevskii Journal of Mathematics // Архив

Lobachevskii J. Math., 2001, том 9, страницы 55–75 (Mi ljm129)

Эта публикация цитируется в 4 статьях

An analog of the Vaisman–Molino cohomology for manifolds Modelled on some types of modules over weil algebras and its application

V. V. Shurygin, L. В. Smolyakova

Kazan State University

Аннотация: An epimorphism $\mu:\mathbf A\to\mathbf B$ of local Weil algebras induces the functor $T^\mu$ from the category of fibered manifolds to itself which assigns to a fibered manifold $p\colon M\to N$ the fibered product $p^\mu\colon T^{\mathbf A}N\times{}_{{T^B}N}T^{\mathbf B}M\to T^{\mathbf A}N$. In this paper we show that the manifold $T^{\mathbf A}N\times{}_{{T^B}N}T^{\mathbf B}M$ can be naturally endowed with a structure of an $\mathbf A$-smooth manifold modelled on the $\mathbf A$-module $\mathbf L={\mathbf A}^n\oplus{\mathbf B}^m$, where $n=\dim N$, $n+m=\dim M$. We extend the functor $T^\mu$ to the category of foliated manifolds $(M,\mathcal F)$. Then we study $\mathbf A$-smooth manifolds $M^\mathbf L$ whose foliated structure is locally equivalent to that of $T^{\mathbf A}N\times{}_{{T^B}N}T^{\mathbf B}M$. For such manifolds $M^\mathbf L$ we construct bigraduated cohomology groups which are similar to the bigraduated cohomology groups of foliated manifolds and generalize the bigraduated cohomology groups of $\mathbf A$-smooth manifolds modelled on $\mathbf A$-modules of the type ${\mathbf A}^n$. As an application, we express the obstructions for existence of an $\mathbf A$-smooth linear connection on $M^\mathbf L$ in terms of the introduced cohomology groups.

Представлено: Б. Н. Шапуков
Поступило: 01.12.2001

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024