RUS  ENG
Полная версия
ЖУРНАЛЫ // Lobachevskii Journal of Mathematics // Архив

Lobachevskii J. Math., 2001, том 8, страницы 167–184 (Mi ljm130)

Эта публикация цитируется в 4 статьях

Large splitting iterative methods and parallel solution of variational inequalities

E. Laitinena, A. V. Lapinb, J. Pieskäa

a Department of Mathematical Sciences, University of Oulu
b Kazan State University, The Faculty of Computer Science and Cybernetics

Аннотация: Splitting iterative methods for the sum of maximal monotone and single-valued monotone operators in a finite-dimensional space are studied: convergence, rate of convergence and optimal iterative parameters are derived. A two-stage iterative method with inner iterations is analysed in the case when both operators are linear, self-adjoint and positive definite. The results are applied for the mesh variational inequalities which are solved using a non-overlapping domain decomposition method and the splitting iterative procedure. Parallel solution of a mesh scheme for continuous casting problem is presented and the dependence of the calculation time on the number of processors is discussed.

Поступило: 20.06.2001

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024