RUS  ENG
Полная версия
ЖУРНАЛЫ // Lobachevskii Journal of Mathematics // Архив

Lobachevskii J. Math., 2005, том 18, страницы 53–105 (Mi ljm65)

Эта публикация цитируется в 3 статьях

On the higher order geometry of Weil bundles over smooth manifolds and over parameter-dependent manifolds

G. N. Bushueva, V. V. Shurygin

Kazan State University

Аннотация: The Weil bundle $T^{\mathbb A}M_n$ of an $n$-dimensional smooth manifold $M_n$ determined by a local algebra $\mathbb A$ in the sense of A. Weil carries a natural structure of an $n$-dimensional $\mathbb A$-smooth manifold. This allows ones to associate with $T^{\mathbb A}M_n$ the series $B^r(\mathbb A)T^{\mathbb A}M_n$, $r=1,\dots,\infty$, of $\mathbb A$-smooth $r$-frame bundles. As a set, $B^r(\mathbb A)T^{\mathbb A}M_n$ consists of $r$-jets of $\mathbb A$-smooth germs of diffeomorphisms $(\mathbb A^n,0)\to T^{\mathbb A}M_n$. We study the structure of $\mathbb A$-smooth $r$-frame bundles. In particular, we introduce the structure form of $B^r(\mathbb A)T^{\mathbb A}M_n$ and study its properties.
Next we consider some categories of $m$-parameter-dependent manifolds whose objects are trivial bundles $M_n\times\mathbb R^m\to\mathbb R^m$, define (generalized) Weil bundles and higher order frame bundles of $m$-parameter-dependent manifolds and study the structure of these bundles. We also show that product preserving bundle functors on the introduced categories of $m$-parameter-dependent manifolds are equivalent to generalized Weil functors.

Ключевые слова: Weil bundle, product preserving bundle functor, higher order connection.

Представлено: Б. Н. Шапуков
Поступило: 14.06.2005

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024