Эта публикация цитируется в
1 статье
Concave schlicht functions with bounded opening angle at infinity
F. G. Avkhadieva,
K.-J. Wirthsb a N. G. Chebotarev Research Institute of Mathematics and Mechanics, Kazan State University
b Technische Universität Braunschweig, Institut für Analysis und Algebra
Аннотация:
Let
$D$ denote the open unit disc. In this article we consider functions
$f(z)=z+\sum_{n=2}^\infty a_n(f)z^n$ that map
$D$ conformally onto a domain whose complement with respect to
$\mathbb C$ is convex and that satisfy the normalization
$f(1)=\infty$. Furthermore, we impose on these functions the condition that the opening angle of
$f(D)$ at infinity is less than or equal to
$\pi A$,
$A\in(1,2]$. We will denote these families of functions by
$CO(A)$. Generalizing the results of [1], [3], and [5], where the case
$A=2$ has been considered, we get representation formulas for the functions in
$CO(A)$. They enable us to derive the exact domains of variability of
$a_2(f)$ and
$a_3(f)$,
$f\in CO(A)$. It turns out that the boundaries of these domains in both cases are described by the coefficients of the conformal maps of
$D$ onto angular domains with opening angle
$\pi A$.
Ключевые слова:
concave schlicht functions, Taylor coefficients. Поступило: 20.01.2005
Язык публикации: английский