RUS  ENG
Полная версия
ЖУРНАЛЫ // Lobachevskii Journal of Mathematics // Архив

Lobachevskii J. Math., 2005, том 17, страницы 47–60 (Mi ljm75)

Эта публикация цитируется в 1 статье

Dynamics of finite-multivalued transformations

K. B. Igudesman

Kazan State University

Аннотация: We consider a transformation of a normalized measure space such that the image of any point is a finite set. We call such a transformation an $m$-transformation. In this case the orbit of any point looks like a tree. In the study of $m$-transformations we are interested in the properties of the trees. An $m$-transformation generates a stochastic kernel and a new measure. Using these objects, we introduce analogies of some main concept of ergodic theory: ergodicity, Koopman and Frobenius–Perron operators etc. We prove ergodic theorems and consider examples. We also indicate possible applications to fractal geometry and give a generalization of our construction.

Ключевые слова: ergodic theory, dynamic system, self-similar set.

Представлено: М. А. Малахальцев
Поступило: 08.12.2004

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024