Эта публикация цитируется в
5 статьях
The continuity of multiplication for two topologies associated with a Semifinite trace on von Neumann algebra
A. M. Bikchentaev N. G. Chebotarev Research Institute of Mathematics and Mechanics, Kazan State University
Аннотация:
Let
$\mathcal M$ be a semifinite von Neumann algebra in a Hilbert space
$\mathcal H$ and
$\tau$ be a normal faithful semifinite trace on
$\mathcal M$. Let
$\mathcal M^{\mathrm{pr}}$ denote the set of all projections in
$\mathcal M$,
$e$ denote the unit of
$\mathcal M$, and
${\|\cdot\|}$ denote the
$C^*$-norm on
$\mathcal M$.
The set of all
$\tau$-measurable operators
$\widetilde{\mathcal M}$ with sum and product defined as the respective closures of the usual sum and product, is a *-algebra. The sets
$$
U(\varepsilon,\delta)=\{x\in\widetilde{\mathcal M}:\|xp\|\le\varepsilon\text{ and }\tau(e-p)\le\delta\text{ for some }p\in\mathcal M^{\mathrm{pr}}\}, \quad \varepsilon>0, \enskip \delta>0,
$$
form a base at 0 for a metrizable vector topology
$t_\tau$ on
$\widetilde{\mathcal M}$, called
the measure topology. Equipped with this topology,
$\widetilde{\mathcal M}$ is a complete topological *-algebra. We will write
$x_i\buildrel{\tau}\over\longrightarrow x$ in case a net
$\{x_i\}_{i\in I}\subset\widetilde{\mathcal M}$ converges to
$x\in\widetilde{\mathcal M}$ for the measure topology on
$\widetilde{\mathcal M}$. By definition, a net
$\{x_i\}_{i\in I}\subset\widetilde{\mathcal M}$ converges $\tau$-locally to $x\in\widetilde{\mathcal M}$ (notation:
$x_i\buildrel{\tau l}\over\longrightarrow x$) if
$x_ip\buildrel{\tau}\over\longrightarrow xp$ for all
$p\in\mathcal M^{\mathrm{pr}}$,
$\tau(p)<\infty$; and a net
$\{x_i\}_{i\in I}\subset\widetilde{\mathcal M}$ converges weak $\tau$-locally to $x\in\widetilde{\mathcal M}$ (notation:
$x_i\buildrel{w\tau l}\over\longrightarrow x$) if
$px_ip\buildrel{\tau}\over\longrightarrow pxp$ for all
$p\in\mathcal M^{\mathrm{pr}}$,
$\tau(p)<\infty$.
Theorem 1.
{\it Let
$x_i,x\in\widetilde{\mathcal M}$.
1. If
$x_i\buildrel{\tau l}\over\longrightarrow x $, then
$x_iy\buildrel{\tau l}\over\longrightarrow xy$ and
$yx_i\buildrel{\tau l}\over\longrightarrow yx$ for every fixed
$y\in\widetilde{\mathcal M}$.
2. If
$x_i \buildrel{w\tau l}\over\longrightarrow x$, then
$x_iy\buildrel{w\tau l}\over\longrightarrow xy$ and
$yx_i\buildrel{w\tau l}\over\longrightarrow yx$ for every fixed
$y\in\widetilde{\mathcal M}$.}
Theorem 2.
{\it If
$\{x_i\}_{i\in I}\subset\widetilde{\mathcal M}$ is bounded in measure and if $x_i\buildrel{\tau l}\over\longrightarrow x\in\widetilde{\mathcal M}$, then
$x_iy\buildrel{\tau}\over\longrightarrow xy$ for all
$\tau$-compact
$y\in\widetilde{\mathcal M}$.}
Theorem 3.
{\it Let
$x,y,x_i,y_i\in\widetilde{\mathcal M}$ and let a set
$\{x_i\}_{i\in I}$ be bounded in measure. If
$x_i\buildrel{\tau l}\over\longrightarrow x$ and
$y_i\buildrel{\tau l}\over\longrightarrow y$, then
$x_iy_i\buildrel{\tau l}\over\longrightarrow xy$.}
If
$\mathcal M$ is abelian, then the weak
$\tau$-local and
$\tau$-local convergencies on
$\widetilde{\mathcal M}$ coincides with the familiar convergence locally in measure. If
$\tau(e)=\infty$, then the boundedness condition cannot be omitted in Theorem 2.
If
$\mathcal M$ is
$\mathcal B(\mathcal H)$ with standard trace, then Theorem 2 for sequences is a “Basic lemma”of the theory of projection methods:
If $y$ is compact and $x_n\to x$ strongly, then $x_ny\to xy$ uniformly, i.e. $\|x_ny-xy\|\to 0$ as $n\to\infty$.
Theorem 3 means that the mapping
$$
(x,y)\mapsto xy\colon(\mathcal B(\mathcal H)_1\times\mathcal B(\mathcal H)\to\mathcal B(\mathcal H))
$$
is strong-operator continuous (
$\mathcal B(\mathcal H)_1$ denotes the unit ball of
$\mathcal B(\mathcal H)$).
Ключевые слова:
Hilbert space, von Neumann algebra, noncom-mutative integration, measurable operator, semifinite trace, convergence with respect to measure, compact operator, topological algebra. Представлено: Д. Х. МуштариПоступило: 08.01.2004
Язык публикации: английский