RUS  ENG
Полная версия
ЖУРНАЛЫ // Lobachevskii Journal of Mathematics // Архив

Lobachevskii J. Math., 2003, том 13, страницы 51–55 (Mi ljm98)

A note on semi-pseudoorders in semigroups

N. Kehayopulu, M. Tsingelis

National and Capodistrian University of Athens, Department of Mathematics

Аннотация: An important problem for studying the structure of an ordered semigroup $S$ is to know conditions under which for a given congruence $\rho$ on $S$ the set $S/\rho$ is an ordered semigroup. In [1] we introduced the concept of pseudoorder in ordered semigroups and we proved that each pseudoorder on an ordered semigroup $S$ induces a congruence $\sigma$ on $S$ such that $S/\rho$ is an ordered semigroup. In [3] we introduced the concept of semi-pseudoorder (also called pseudocongruence) in semigroups and we proved that each semi-pseudoorder on a semigroup $S$ induces a congruence $\sigma$ on $S$ such that $S/\rho$ is an ordered semigroup. In this note we prove that the converse of the last statement also holds. That is each congruence $\sigma$ on a semigroup $(S,.)$ such that $S/\rho$ is an ordered semigroup induces a semi-pseudoorder on $S$.

Ключевые слова: Pseudoorder, pseudocongruence, semi-pseudoorder.

Представлено: М. М. Арсланов
Поступило: 30.09.2003

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024