Аннотация:
Статья посвящена проблеме прогнозирования для выборок с действительными признаками. Цель работы — оценить влияние порожденных бинарных признаков на точность прогнозирования линейной регрессии и гибридных линейных методов, основанных на кластеризации. Для этого исходный набор входных признаков выборки дополняется бинарными признаками, полученными из исходных посредством нечеткой классификации. Производится сравнительное тестирование рассматриваемых методов прогнозирования на исходной и полученной выборках. Результаты тестирования на трех различных базах данных показали, что для классической линейной регрессии использование порожденных признаков привело к существенному увеличению точности прогнозирования. Для линейной регрессии с кластеризацией методом k-means также наблюдалось увеличение точности прогноза, для линейной регрессии с кластеризацией методом knn — незначительное снижение, и неустойчивый результат — для двойной линейной регрессии.
Ключевые слова:линейная регрессия, нечеткая классификация, гибридные методы прогнозирования.