Аннотация:
Рассматриваются семейства математических моделей биологических популяций. Выявлены инвариантные соотношения между параметрами, характеризующими ту или иную популяцию. Исследуются динамические свойства моделей в предположении, что одна или несколько популяций являются сильно плодовитыми, т.е. соответствующие мальтузианские коэффициенты достаточно велики. На основе разработанного автором специального асимптотического метода задачу о поведении решений исходных систем удается свести к существенно более простой задаче о динамике полученных конечномерных отображений. В частности, показано, что для решений этих отображений, а значит, и исходных систем уравнений характерны нерегулярные релаксационные колебания. Интересно отметить, что амплитуды таких колебаний являются достаточно большими.
Ключевые слова:релаксационные колебания, большой параметр, асимптотика, периодическое решение.