Аннотация:
Рассматривается задача о числе решетчатых разбиений плоскости на полимино заданной площади. Полимино представляет собой связную фигуру на плоскости, составленную из конечного числа единичных квадратов, примыкающих друг к другу по сторонам. Разбиение называется решетчатым, если любую фигуру разбиения можно перевести в любую другую фигуру параллельным переносом, переводящим все разбиение в себя. Пусть $T(n)$ – число решетчатых разбиений плоскости на полимино площади $n$, решетка периодов которых является подрешеткой решетки $\mathbb{Z}^2$. Доказано, что $2^{n-3}+2^{[\frac{n-3}{2}]}\leq T(n)\leq C(n+1)^3(2.7)^{n+1}$. При доказательстве нижней оценки использована явная конструкция, позволяющая построить требуемое число решетчатых разбиений плоскости. Доказательство верхней оценки основано на одном критерии существования решетчатого разбиения плоскости на полимино, а также на теории самонепересекающихся блужданий на квадратной решетке. Также доказано, что почти все полимино, дающие решетчатые разбиения плоскости, имеют большой периметр.