RUS  ENG
Полная версия
ЖУРНАЛЫ // Моделирование и анализ информационных систем // Архив

Модел. и анализ информ. систем, 2013, том 20, номер 5, страницы 148–157 (Mi mais337)

Эта публикация цитируется в 4 статьях

Оценка числа решетчатых разбиений плоскости на полимино заданной площади

А. В. Шутовa, Е. В. Коломейкинаb

a Владимирский государственный университет, 600024 Россия, г. Владимир, ул. Строителей, 11
b Московский государственный технический университет им. Н. Э. Баумана, 05005 Pоссия, г. Москва, 2-ая Бауманская ул., 5

Аннотация: Рассматривается задача о числе решетчатых разбиений плоскости на полимино заданной площади. Полимино представляет собой связную фигуру на плоскости, составленную из конечного числа единичных квадратов, примыкающих друг к другу по сторонам. Разбиение называется решетчатым, если любую фигуру разбиения можно перевести в любую другую фигуру параллельным переносом, переводящим все разбиение в себя. Пусть $T(n)$ – число решетчатых разбиений плоскости на полимино площади $n$, решетка периодов которых является подрешеткой решетки $\mathbb{Z}^2$. Доказано, что $2^{n-3}+2^{[\frac{n-3}{2}]}\leq T(n)\leq C(n+1)^3(2.7)^{n+1}$. При доказательстве нижней оценки использована явная конструкция, позволяющая построить требуемое число решетчатых разбиений плоскости. Доказательство верхней оценки основано на одном критерии существования решетчатого разбиения плоскости на полимино, а также на теории самонепересекающихся блужданий на квадратной решетке. Также доказано, что почти все полимино, дающие решетчатые разбиения плоскости, имеют большой периметр.

Ключевые слова: разбиения, полимино.

УДК: 514.174.5

Поступила в редакцию: 21.10.2013



© МИАН, 2024