Аннотация:
Рассматривается логистическое уравнение с быстро осциллирующим периодическим по времени кусочно-постоянным или кусочно-линейным запаздыванием. Показано, что в первом случае усредненным уравнением является логистическое уравнение с двумя запаздываниями, а во втором — логистическое уравнение с распределенным запаздыванием. Получен критерий устойчивости состояния равновесия в каждом из случаев. Рассмотрен вопрос о динамических свойствах исходного уравнения при условии, когда в усредненном уравнении реализуется критический случай в задаче об устойчивости стационара. Установлено, что локальная динамика определяется ляпуновской величиной, знак которой зависит от параметров задачи.
Ключевые слова:усреднение, устойчивость, нелинейная динамика, метод нормальных форм.