RUS  ENG
Полная версия
ЖУРНАЛЫ // Моделирование и анализ информационных систем // Архив

Модел. и анализ информ. систем, 2015, том 22, номер 1, страницы 65–73 (Mi mais429)

Эта публикация цитируется в 2 статьях

Локальная динамика уравнения второго порядка с большим экспоненциально распределенным запаздыванием и существенным трением

Д. В. Глазков

Ярославский государственный университет им. П. Г. Демидова, 150000 Россия, г. Ярославль, ул. Советская, 14

Аннотация: Изучается локальная динамика нелинейного дифференциального уравнения второго порядка с большим экспоненциально распределенным запаздыванием в окрестности нулевого решения при условии $\gamma{>}\sqrt{2}$. Параметр $\gamma$ можно интерпретировать как коэффициент трения. Найдены значения параметров, при которых реализуются критические случаи в задаче об устойчивости. Показано, что характеристическое уравнение для определения устойчивости нулевого решения может иметь сколь угодно много корней в окрестности мнимой оси. Тем самым реализуется критический случай бесконечной размерности. Построены аналоги нормальных форм, описывающие локальную динамику исходного уравнения. Сформулированы результаты о соответствии решений полученных уравнений в частных производных и уравнения второго порядка с большим экспоненциально распределенным запаздыванием. Полученные в работе асимптотические формулы позволяют явно находить характеристики близких к нулю локальных режимов исходной задачи, а также определять области параметров и начальных условий, в которых возможно возникновение решения некоторого заданного вида.

Ключевые слова: локальная динамика, запаздывание, нормальная форма, асимптотическая формула, малый параметр.

УДК: 517.929

Поступила в редакцию: 15.05.2014



Реферативные базы данных:


© МИАН, 2024