RUS  ENG
Полная версия
ЖУРНАЛЫ // Моделирование и анализ информационных систем // Архив

Модел. и анализ информ. систем, 2015, том 22, номер 5, страницы 609–628 (Mi mais463)

Эта публикация цитируется в 2 статьях

Особенности динамики уравнения Колмогорова–Петровского–Пискунова с отклонением по пространственной переменной

С. В. Алешинab, С. Д. Глызинab, С. А. Кащенкоac

a Ярославский государственный университет им. П. Г. Демидова, ул. Советская, 14, г. Ярославль, 150000 Россия
b НЦЧ РАН, ул. Лесная, д. 9, г.Черноголовка, Московская область, 142432 Россия
c Национальный исследовательский ядерный университет «МИФИ», Каширское шоссе, 31, г. Москва, 115409 Россия

Аннотация: Рассматривается задача распространения волны плотности в логистическом уравнении с диффузией и отклонением по пространственной переменной (уравнение Фишера–Колмогорова–Петровского–Пискунова с отклонением). Для исследования качественного поведения решений этого уравнения было рассмотрено уравнение профиля волны и найдены условия возникновения у него колебательных режимов. Затем проанализирована соответствующая логистическому уравнению с отклонением краевая задача с периодическими условиями, для которой изучена проблема потери устойчивости пространственно однородного состояния равновесия и найдены ответвляющиеся от него пространственно неоднородные колебательные режимы. Численный анализ процесса распространения волны показал, что при достаточно малых значениях запаздывания данное уравнение имеет решения, близкие к решениям стандартного уравнения КПП. Увеличение параметра запаздывания приводит сначала к появлению затухающей колебательной составляющей в пространственном распределении решения. Дальнейший рост данного параметра приводит к разрушению бегущей волны. Это выражается в том, что на участке распространения волны, противоположном направлению отклонения, сохраняются незатухающие по времени и медленно распространяющиеся по пространству колебания, близкие к решениям соответствующей краевой задачи с периодическими граничными условиями. Наконец, если значение отклонения достаточно велико, то во всей области распространения волны наблюдаются интенсивные пространственно-временные колебания.

Ключевые слова: аттрактор, бифуркация, уравнение Фишера–Колмогорова–Петровского–Пискунова, уравнение Гинзбурга–Ландау, отклонение по пространству.

УДК: 517.9

Поступила в редакцию: 10.08.2015

DOI: 10.18255/1818-1015-2015-5-609-628



Реферативные базы данных:


© МИАН, 2024