Аннотация:
Исследование решений начально-краевых задач для параболических уравнений является важной составляющей математического моделирования. Особый интерес для математического моделирования представляют краевые задачи, решения которых претерпевают резкое изменение в какой-либо области пространства. Такие области называются внутренними переходными слоями. В том случае, если положение переходного слоя изменяется со временем, решение параболической задачи имеет вид движущегося фронта. При доказательстве существования у начально-краевых задач решений такого вида весьма эффективным оказывается метод дифференциальных неравенств, согласно которому для данной краевой задачи строятся так называемые верхнее и нижнее решения. Суть асимптотического метода дифференциальных неравенств заключается в том, чтобы получать верхнее и нижнее решения как модификации асимптотических представлений решений краевых задач. Существование верхнего и нижнего решений является достаточным условием существования решения краевой задачи. В ходе проверки выполнения дифференциальных неравенств существенным оказывается так называемое «условие квазимонотонности». В настоящей работе рассмотрено, каким образом можно построить верхнее и нижнее решения для системы параболических уравнений при различных условиях квазимонотонности.
Ключевые слова:система параболических уравнений, переходный слой, метод дифференциальных неравенств.