Аннотация:
Интерполяция функций на основе многочленов Лагранжа получила широкое применение. Однако в случае, когда интерполируемая функция имеет области больших градиентов, применение многочленов Лагранжа приводит к существенным погрешностям. В работе предполагается, что интерполируемая функция одной переменной представима в виде суммы регулярной и погранслойной составляющих. Предполагается, что производные регулярной составляющей до определенного порядка ограничены, а погранслойная составляющая является функцией общего вида, известная с точностью до множителя, ее производные не являются равномерно ограниченными. Такое представление имеет решение сингулярно возмущенной краевой задачи. Строятся интерполяционные формулы, точные на погранслойной составляющей, получены оценки погрешности интерполяции, равномерные по погранслойной составляющей и ее производным. Исследовано применение построенных интерполяционных формул к построению формул численного дифференцирования и интегрирования функций рассматриваемого вида.