Аннотация:
Рассматривается задача целочисленного сбалансирования четырехмерной матрицы. В исходной вещественной матрице элементы внутренней части (все четыре индекса больше нуля) просуммированы по каждому направлению и каждому плоскому и трехмерному сечению матрицы, а также найдена общая сумма. Данные суммы размещаются в элементах матрицы, у которых один или несколько индексов равны нулю (в соответствии с направлениями суммирования). Ищется целочисленная матрица той же структуры, получаемая из исходной заменой элементов на округления до целого сверху или целого снизу. При этом элемент с четырьмя нулевыми индексами получается по обычным правилам округления.
В статье рассматривается также задача о наибольшем кратном потоке в сети произвольной натуральной кратности $k$. Определяется три типа дуг в сети: обычная дуга, кратная дуга, мультидуга. Каждая кратная и мультидуга представляет собой объединение $k$ связанных дуг, согласованных между собой. Задаются правила построения сети. Вводится понятие делимой сети и ряд связанных определений.
Определяются общие принципы сведения задачи целочисленного сбалансирования $l$-мерной матрицы ($l\geq3$) к задаче о максимальном потоке в делимой кратной сети кратности $k$.
Задаются правила сведения четырехмерной задачи сбалансирования к задаче о наибольшем потоке в сети кратности 5. Для этой сети формулируется алгоритм нахождения максимального потока, удовлетворяющего условиям разрешимости задачи сбалансирования.