Аннотация:
Работа посвящена исследованию динамических свойств решений краевых задач, связанных с классической системой Ферми–Паста–Улама (ФПУ). При исследовании локальной динамики этих задач может реализовываться критический случай бесконечной размерности. В этих условиях построено специальное нелинейное уравнение с частными производными, которое играет роль квазинормальной формы, т.е. определяет в главном поведение всех решений исходной краевой задачи с начальными условиями из достаточно малой окрестности состояния равновесия. В зависимости от значений параметров в качестве квазинормальных форм выступают модифицированное уравнение Кортевега–де Вриза (КДВ) и уравнение Кортевега–де Вриза–Бюргерса (КДВБ). При некоторых дополнительных предположениях к полученным краевым задачам применена процедура повторной нормализации, приводящая к бесконечномерной системе обыкновенных дифференциальных уравнений, описан способ сворачивания этой системы в краевую задачу–аналог нормальной формы. Построенные квазинормальные формы позволяют судить о динамике задачи ФПУ. Основной результат работы состоит в том, что аналитическими методами нелинейной динамики изучен вопрос о взаимодействии волн, движущихся в разных направлениях, в задаче ФПУ. При рассмотрении так называемых регулярных решений описано влияние волн друг на друга, которое задается специальным интегральным соотношением. Показано, что это влияние является асимптотически малым и не меняет форму волн, внося вклад только в их скоростной сдвиг, который не меняется по времени.