Аннотация:
Важной частью развития современной биофизики является создание адекватных математических моделей процессов в живой природе. Процессы свертывания крови, распространения нервного импульса, сокращение сердечной мышцы, формирования структур в живой природе относятся к типу автоволновых. Для описания автоволновых процессов в активных средах часто применяется система уравнений ФитцХью–Нагумо. При решении соответствующей математической задачи стандартно используются численные методы. Но автоволновые решения с резкими градиентами требуют применения ресурсоемких алгоритмов. Задачи такого типа целесообразно исследовать аналитическими методами. В данной работе для получения приближенного решения сингулярно возмущенной системы типа ФитцХью-Нагумо применяется асимптотический метод теории контрастных структур. Метод позволяет редуцировать нелинейную систему уравнений к ряду задач, которые решаются аналитически или устойчивыми численными алгоритмами. В работе получено асимптотическое приближение стационарного автоволнового решения нелинейной системы и определена формула, задающая локализацию внутренних переходных слоев. Для оценки результатов проведено сравнение с численным решением. Описанное в работе применение теории контрастных структур к исследованию моделей активных сред может быть использовано для аналитического исследования других подобных систем, совершенствования имеющихся моделей и повышения эффективности численных расчетов.