Аннотация:
В статье рассматриваются бифуркационные задачи для логистического уравнения с запаздыванием при наличии малых возмущений. Наиболее интересны результаты для случая, когда малые возмущения содержат большое запаздывание. В качестве основных результатов получены специальные нелинейные эволюционные нормальной формы уравнения, нелокальная динамика которых определяет поведение решений исходного уравнения в малой окрестности состояния равновесия или цикла.
Как оказывается, принципиальное значение имеет порядок величины большого запаздывания. Для наиболее простого случая, когда этот порядок совпадает с величиной, обратной к фигурирующему в уравнении малому параметру, нормальная форма представляет собой комплексное уравнение с запаздыванием. В том случае, когда порядок коэффициента запаздывания еще выше, в качестве нормальной формы выступает многопараметрическое семейство специальных краевых задач вырожденно-параболического типа. Все это позволяет сделать вывод о том, что в рассматриваемых задачах с большим запаздыванием характерно явление мультистабильности.