RUS  ENG
Полная версия
ЖУРНАЛЫ // Моделирование и анализ информационных систем // Архив

Модел. и анализ информ. систем, 2018, том 25, номер 1, страницы 63–70 (Mi mais609)

Эта публикация цитируется в 1 статье

Динамические системы

Бифуркация Андронова–Хопфа в одной биофизической модели реакции Белоусова

В. Е. Горюнов

НЦЧ РАН, ул. Лесная, д. 9, г. Черноголовка, Московская область, 142432 Россия

Аннотация: В работе рассматривается задача математического моделирования окислительновосстановительных колебательных химических реакций, в основе которых лежит широко известный механизм реакции Белоусова. Процесс взаимодействия основных компонентов в такой реакции может быть интерпретирован феноменологически близкой к ней моделью «хищник–жертва». В связи с этим рассматривается параболическая краевая задача, состоящая из трех уравнений вольтерровского типа, которая представляет собой математическую модель этой реакции. Сначала проводится локальное исследование окрестности нетривиального состояния равновесия системы, определяется критический параметр, при котором в окрестности нетривиального решения колебательным образом теряется устойчивость. С помощью стандартных замен строится нормальная форма изучаемой системы, приводится вид ее коэффициентов, по которым определяется качественное поведение модели, кроме того, построено их графическое представление в зависимости от параметров задачи. Полученная нормальная форма позволяет доказать теорему о существовании орбитально асимптотически устойчивого предельного цикла, ответвляющегося от состояния равновесия, и найти его асимптотику. Для выяснения границ применимости найденной асимптотики проводится сравнение амплитуд колебаний одной из компонент периодического решения, полученных на основе асимптотических формул и путем численного интегрирования модельной системы. Наряду с основным случаем бифуркации Андронова–Хопфа рассмотрены различные комбинации значений коэффициентов нормальной формы, получающиеся при изменении параметров исследуемой системы, и изучено соответствующее им поведение решений вблизи рассматриваемого состояния равновесия. Далее рассмотрена задача о диффузионной потере устойчивости полученного на первом этапе пространственно однородного цикла. Найдено критическое значение параметра диффузии, при котором этот цикл распределенной системы теряет устойчивость.

Ключевые слова: реакция Белоусова, параболическая система, диффузия, нормальная форма, асимптотика, бифуркация Андронова–Хопфа.

УДК: 517.9

Поступила в редакцию: 20.11.2017

DOI: 10.18255/1818-1015-2018-1-63-70



Реферативные базы данных:


© МИАН, 2024