RUS  ENG
Полная версия
ЖУРНАЛЫ // Моделирование и анализ информационных систем // Архив

Модел. и анализ информ. систем, 2018, том 25, номер 1, страницы 71–82 (Mi mais610)

Динамические системы

Особенности локальной динамики модели оптико-электронного осциллятора с запаздыванием

Е. В. Григорьеваa, С. А. Кащенкоb, Д. В. Глазковb

a Белорусский государственный экономический университет, пр. Партизанский, 26, г. Минск, 220070 Беларусь
b Ярославский государственный университет им. П.Г. Демидова, ул. Советская, 14, г. Ярославль, 150003 Россия

Аннотация: В работе рассматривается модель оптико-электронного осциллятора, описываемая системой дифференциальных уравнений с запаздыванием. Существенной особенностью данной модели является наличие малого параметра перед одной из производных, что позволяет сделать вывод о действии процессов со скоростями разных порядков. Анализируется локальная динамика сингулярно возмущенной системы в окрестности нулевого состояния равновесия. Характеристическое уравнение линеаризованной задачи при значениях параметров, близких к критическим, имеет асимптотически большое число корней с близкой к нулю вещественной частью. Для изучения происходящих в системе бифуркаций используется метод построения специальных нормализованных уравнений для медленных амплитуд, которые описывают поведение близких к нулю решений исходной задачи. Важной особенностью этих уравнений является то, что от малого параметра они не зависят. Структура корней характеристического уравнения и порядок надкритичности определяют вид нормальной формы, которая может быть представлена уравнением в частных производных. В роли «пространственной» переменной выступает «быстрое» время, для которого выполняются условия периодичности. Отмечается высокая чувствительность динамических свойств нормализованных уравнений к изменению малого параметра, что является признаком возможного неограниченного процесса прямых и обратных бифуркаций. Также некоторые построенные уравнения обладают свойством мультистабильности.

Ключевые слова: дифференциальное уравнение, локальная динамика, малый параметр, асимптотика, бифуркация, нормальная форма, краевая задача.

УДК: 517.929

Поступила в редакцию: 15.11.2017

DOI: 10.18255/1818-1015-2018-1-71-82



Реферативные базы данных:


© МИАН, 2024