Аннотация:
На основе модифицированного асимптотического метода пограничных функций и асимптотического метода дифференциальных неравенств исследуется вопрос о существовании устойчивых по Ляпунову стационарных решений с внутренними слоями уравнения нелинейной теплопроводности в случае нелинейной зависимости мощности тепловых источников от температуры. Обсуждаются основные условия существования таких решений, построение асимптотического приближения решения произвольного порядка точности, алгоритм определения положения поверхности перехода, в окрестности которой локализован внутренний слой контрастной структуры, и обоснование формальных построений. Основная трудность связана с описанием поверхности перехода. Предлагается эффективный алгоритм определения положения поверхности перехода, который развивает наш подход в описании многомерных задач на более сложный случай сбалансированной нелинейности. Результат может быть использован для создания численного алгоритма, основанного на применении асимптотического анализа с целью построения пространственно-неоднородных сеток при описании внутреннего слоя решения. В качестве иллюстрации рассматривается задача на плоскости, которая позволяет визуализировать численные расчеты. Сравниваются численные и асимптотические решения нулевого порядка при различных значениях малого параметра.