Аннотация:
Работа направлена на исследование решений типа фронта для нелинейной системы параболических уравнений в двумерной области. Систему можно рассматривать как математическую модель, описывающую резкое изменение физических характеристик в пространственно неоднородных средах. Система уравнений содержит малые параметры в разных степенях при дифференциальном операторе, что означает различие характерных скоростей протекания процессов для каждой из компонент. Исследование проведено с помощью методов теории контрастных структур, что позволило получить условия существования решения типа фронта, локализованного в окрестности замкнутой кривой, определить зависимость скорости фронта от времени, получить асимптотическое приближение решения нулевого и первого порядков по малому параметру. Приближенное решение позволяет подобрать параметры модели таким образом, чтобы результат соответствовал наблюдаемым процессам, объяснять и описывать особенности решений с резкими градиентами, создавать модели, обладающие устойчивыми решениями, тем самым облегчая задачу получения численных результатов. Известно, что численный эксперимент для пространственно двумерных моделей требует значительных вычислительных мощностей, применения методов параллельного программирования и не позволяет эффективно анализировать и модифицировать модели. В данной работе получено асимптотическое приближение решения, требующее обоснования, которое может быть проведено по методу дифференциальных неравенств. Метод дифференциальных неравенств в данном случае предполагает построение верхнего и нижнего решений задачи на основе асимптотики. Область применения математической модели — описание автоволновых решений в задачах экологии, биофизики, физики горения, химической кинетики.