Аннотация:
Возможность идентификации семантической близости между словами сделала модель word2vec широко используемой в NLP-задачах. Идея word2vec основана на контекстной близости слов. Каждое слово может быть представлено в виде вектора, близкие координаты векторов могут быть интерпретированы как близкие по смыслу слова. Таким образом, извлечение семантических отношений (отношение синонимии, родо-видовые отношения и другие) может быть автоматизировано. Установление семантических отношений вручную считается трудоемкой и необъективной задачей, требующей большого количества времени и привлечения экспертов. Но среди ассоциативных слов, сформированных с использованием модели word2vec, встречаются слова, не представляющие никаких отношений с главным словом, для которого был представлен ассоциативный ряд. В работе рассматриваются дополнительные критерии, которые могут быть применимы для решения данной проблемы. Наблюдения и проведенные эксперименты с общеизвестными характеристиками, такими как частота слов, позиция в ассоциативном ряду, могут быть использованы для улучшения результатов при работе с векторным представлением слов в части определения семантических отношений для русского языка. В экспериментах используется обученная на корпусах Флибусты модель word2vec и размеченные данные Викисловаря в качестве образцовых примеров, в которых отражены семантические отношения. Семантически связанные слова (или термины) нашли свое применение в тезаурусах, онтологиях, интеллектуальных системах для обработки естественного языка.