Аннотация:
Статья написана в поддержку учебной дисциплины “Неклассические логики”. В рамках этой дисциплины объектами изучения являются базовые принципы и конструктивные элементы, с помощью которых происходит формальное построение различных неклассических логик высказываний. Несмотря на абстрактность теории неклассических логик, в которой основное внимание уделяется строгой математической формализации логических рассуждений, существуют реальные прикладные области применения теоретических результатов. В частности, языки темпоральных модальных логик широко используются для моделирования, спецификации и верификации (анализа корректности) программных систем логического управления. В этой статье на примере линейной темпоральной логики LTL демонстрируется, как абстрактные понятия неклассических логик могут находить отражение на практике в области информационных технологий и программирования. Показывается возможность представления поведения программной системы в виде набора LTL-формул и использования этого представления для проверки выполнимости программных свойств системы через процедуру доказательства справедливости логических выводов, выраженных в терминах линейной темпоральной логики LTL. В качестве программных систем, для спецификации поведения которых будет применяться логика LTL, рассматриваются счётчиковые машины Минского. Счётчиковые машины Минского - один из способов формализации интуитивного понятия алгоритма. Они обладают той же вычислительной мощностью, что и машины Тьюринга. Счётчиковая машина имеет вид компьютерной программы, написанной на языке высокого уровня, поскольку содержит переменные, называемые счётчиками, и операторы условного и безусловного перехода, позволяющие строить конструкции циклов. Известно, что любой алгоритм (гипотетически) может быть реализован в виде трёхсчётчиковой машины Минского.