RUS  ENG
Полная версия
ЖУРНАЛЫ // Математическая биология и биоинформатика // Архив

Матем. биология и биоинформ., 2017, том 12, выпуск 2, страницы 496–520 (Mi mbb309)

Эта публикация цитируется в 2 статьях

Математическое моделирование

Numerical bifurcation analysis of mathematical models with time delays with the package DDE-BIFTOOL

[Численный бифуркационный анализ математических моделей с запаздыванием по времени с использованием пакета программ DDE-BIFTOOL]

T. Luzyaninaa, J. Sieberb, K. Engelborghsc, G. Samaeyd, D. Roosed

a Institute of Mathematical Problems of Biology – the branch of Keldysh Institute of Applied Mathematics, 142290 Pushchino, Russia
b Department of Mathematics, University of Exeter, Exeter EX4 4QF, UK
c Materialise NV, Technologielaan 15, 3001 Leuven, Belgium
d Department of Computer Science, Katholieke Universiteit Leuven, Celestijnenlaan 200 A, B-3001 Heverlee-Leuven, Belgium

Аннотация: Математическое моделирование с помощью дифференциальных уравнений с запаздыванием по времени широко используется для анализа и предсказания в различных областях биологической науки, например, в популяционной динамике, эпидемиологии, иммунологии, физиологии, нейронных сетях. Запаздывание по времени в этих моделях учитывает зависимость текущего состояния моделируемой системы от ее поведения в прошлом. Запаздывание может участвовать в описании продолжительности определенных скрытых процессов, как, например, периоды жизненного цикла, время между инфекцией клетки и появлением новых вирусов, продолжительность инфекционного периода, иммунного периода и т.д. По причине бесконечномерной природы дифференциальных уравнений с запаздыванием по времени аналитическое изучение соответствующих математических моделей может дать только ограниченные результаты. Поэтому численный анализ является основным способом достижения качественного и количественного понимания динамики моделей. Бифуркационный анализ динамической системы используется для понимания зависимости поведения решения системы и его устойчивости от изменения параметров системы. Пакет программ DDE-BIFTOOL является первым универсальным пакетом для бифуркационного анализа дифференциальных уравнений с запаздыванием. Этот пакет может быть использован для вычисления и анализа локальной устойчивости стационарных и периодических решений данной системы, для изучения зависимости этих решений от параметров системы методом продолжения по параметру. Также, с помощью этого пакета можно вычислять и продолжать по параметру несколько локальных и глобальных бифуркаций, как то: седло-узловая бифуркация и бифуркация Хопфа для стационарных решений; седло-узловая бифуркация, удвоение периода и бифуркации торов для периодических решений; гомоклинические и гетероклинические решения. В этой статье мы описываем структуру пакета DDE-BIFTOOL, используемые в пакете численные методы и иллюстрируем использование пакета для определенной системы дифференциальных уравнений с запаздыванием по времени.

Ключевые слова: нелинейная динамика; дифференциальные уравнения с запаздыванием; анализ устойчивости; периодические решения; метод коллокаций; численный бифуркационный анализ; запаздывание, зависящее от решения системы.

УДК: 519.6

Материал поступил в редакцию 21.11.2017, опубликован 13.12.2017

Язык публикации: английский

DOI: 10.17537/2017.12.469



© МИАН, 2024