Аннотация:
Предложена и исследована динамическая математическая модель распространения на плоскости трансмиссивного заболевания. Модель представляет собой систему четырёх дифференциальных уравнений в частных производных, её переменными являются плотности популяций здоровых и инфицированных переносчиков и резервуара возбудителя болезни. Изучен простейший случай пространственно-однородного распределения популяций, найдены стационарные режимы, получены условия их устойчивости. Показано, что достаточно интенсивное применение таких профилактических мер, как истребление переносчиков заболевания, лечение инфицированных особей, предотвращение контакта с переносчиком заболевания приводит к устойчивости стационарного режима с отсутствием болезни. Предложена схема численного анализа нестационарной математической модели, учитывающей пространственную неоднородность распределения популяций. С помощью вычислительных экспериментов исследованы различные стратегии применения инсектицидов в пространстве для профилактики трансмиссивных заболеваний. В результате сформулированы следующие рекомендации: наиболее эффективным является локализованное применение инсектицидов; обработку следует проводить вблизи источника размножения переносчиков заболевания, создавая барьер между источником и резервуаром возбудителя; для каждого количества инсектицидов существует свой оптимальный размер области обработки. Полученные результаты могут быть использованы для обоснования мероприятий по ограничению распространения дирофиляриоза, когда переносчиками заболевания является популяция комаров, а резервуаром — популяция собак.