Аннотация:
Целью работы являлось изучение возможности использования электроэнцефалографии для диагностики деменции, объективной оценки тяжести течения заболевания и результатов нейрометаболического лечения. Исследование основывалось на применении методов машинного обучения для компьютерной диагностики деменции по энергетическим спектрам сигналов ЭЭГ. Исследовалась эффективность различных технологий машинного обучения для отделения по векторам спектральных показателей группы пациентов с различной степенью тяжести деменции от групп здоровых и пациентов с преддементными нарушениями. Использование процедуры скользящего контроля показало, что эффективность разделения группы с деменцией от группы лиц с нормальным физиологическим старением и группы лиц молодого возраста достигает 0.783 и 0.786 соответственно по параметру ROC AUC. Результаты исследования позволяют сделать предположение о соответствии алгоримической оценки тяжести деменции по ЭЭГ настоящему течению заболевания. Так, число случаев с алгоритмически выявленной положительной динамикой значительно превышает число случаев с алгоритмически выявленной отрицательной динамикой после проведённой нейрометаболической терапии в группе с лёгким течением деменции. В объединённой группе со средней тяжестью и тяжёлым течением заболевания подобного превышения не наблюдалось.