RUS  ENG
Полная версия
ЖУРНАЛЫ // Математическая биология и биоинформатика // Архив

Матем. биология и биоинформ., 2020, том 15, выпуск 1, страницы 57–72 (Mi mbb422)

Эта публикация цитируется в 2 статьях

Математическое моделирование

Mask-based approach in phasing and restoring of single-particle diffraction data

[Восстановление модулей и расчет фаз для дифракционной картины изолированной частицы с использованием бинарных масок объекта]

V. Yu. Lunin, N. L. Lunina, T. E. Petrova

Institute of Mathematical Problems of Biology RAS, Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Pushchino, Moscow Region, 142290 Russia

Аннотация: Развитие экспериментальной техники и, в частности, ввод в эксплуатацию рентгеновских лазеров на свободных электронах позволяют приблизиться к возможности регистрации рентгеновского рассеяния отдельной макромолекулярной частицей. Это открывает дорогу к определению методами рентгеновской дифракции структуры некристаллизованных макромолекулярных объектов. Возможность измерения интенсивностей не-Брэгговских рефлексов создает существенную избыточность экспериментальных данных, что существенно упрощает определение структуры объекта. Дискретизация непрерывной дифракционной картины на сетку с достаточно мелким шагом позволяет рассматривать проблему определения структуры как проблему определения структуры для “виртуального” кристалла с чрезвычайно большим относительным объемом растворителя в элементарной ячейке. В предположении, что область, занимаемая объектом в элементарной ячейке, известна, это позволяет ожидать высокой эффективности в решении фазовой проблемы итерационных методов, типа методов модификации электронной плотности. В то же время, итерационные методы чувствительны к точности задания области молекулы, неполноте экспериментальных данных и изначальной неединственности решения. Разработанный авторами метод предварительного решения фазовой проблемы осуществляет случайный поиск связных бинарных аппроксимаций распределения электронной плотности в объекте (масок области молекулы), воспроизводящих с достаточной точностью дифракционную картину, наблюдаемую в эксперименте. Выравнивание, в рамках группы эквивалентности решений фазовой проблемы, найденных масок с последующим усреднением позволяет получить приближенное решение фазовой проблемы. Помимо оценки неизвестных значений фаз структурных факторов разработанный подход позволяет восстанавливать фрагменты дифракционной картины (значения модулей структурных факторов), потерянные в эксперименте. Примерами таких фрагментов могут служить нерегистрируемая центральная зона рентгенограммы или области “переэкспонированных” (ввиду ограниченности рабочего диапазона детектора) рефлексов.

Ключевые слова: биологические макромолекулы, изолированные частицы, рентгеновское рассеяние, рентгеновские лазеры, фазовая проблема, восстановление дифракционных данных, эффективное разрешение.

Материал поступил в редакцию 19.11.2019, 19.02.2020

Язык публикации: английский

DOI: 10.17537/2020.15.57



© МИАН, 2024